Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period

Identifieur interne : 000468 ( Main/Exploration ); précédent : 000467; suivant : 000469

Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period

Auteurs : Michael Barton [États-Unis] ; Joep P. P. Huijsmans [Pays-Bas]

Source :

RBID : ISTEX:5A8F1CCEAD991A51F5343C9C0CD7636A1191ED9E

Descripteurs français

English descriptors

Abstract

Abstract: The post-caldera Kameni islands of the Santorini volcanic complex, Aegean Sea, Greece are entirely volcanic and were formed by eleven eruptions between 197 B.C. and 1950. Petrographic, mineral chemical and whole-rock major and trace element data are presented for samples of lava collected from the products of seven eruptive cycles which span the entire period of activity. The main phenocryst phases are plagioclase, clinopyroxene, orthopyroxene and titaniferous magnetite, which are weakly zoned (e.g. plagioclase — An55 to An42). The lavas are typical calc-alkaline dacites and show a restricted range of composition (from 64.1 to 68.4 wt. % SiO2). The phenocrysts were in equilibrium with the melts at temperatures of 960–1012 °C, pressures of 800–1500 bars and oxygen fugacities of 10−9.6-10−9.9 bars. The pre-eruptive water content of the magmas was 3–4 wt. % but since the lavas contain only 0.1–0.4 wt. % H2O, a considerable amount (about 0.01–0.015 km3) of water was lost prior to or during eruption. This indicates that the magmas rose to the surface gradually allowing the (largely) non-explosive loss of volatiles. The lavas were probably extruded initially from more or less cylindrical conduits which developed into fissures as the eruptions proceeded. The post-caldera lavas evolved from more mafic parental magmas (basalt-andesite) via fractional crystallization. The small range of compositional variation shown by these lavas can be explained in terms of near-equilibrium crystallization. Analyses of samples of lavas belonging to single eruption cycles and to individual flows indicate that the underlying magma chamber is compositionally zoned. The average composition of erupted magma has remained approximately constant since 1570 A.D. but that fact that the 197 B.C. magma was sligthly richer in SiO2 provides additional evidence that the magma chamber is compositionally zoned. Crystal settling has not affected the composition of the magma over a 2,200 year period of time which indicates that the melts do not behave as Newtonian fluids. Zonation was thus probably established prior to the 197 B.C. eruption though it is possible that it is developed and maintained by crystal-liquid differentiation processes other than crystal settling (e.g. boundary layer crystallization). The data indicate that there has been no significant cooling during 2,200 years; the maximum amount of cooling is <50 °C and is probably less than ∼30 °C. Two hypotheses are considered to explain the thermal and chemical buffering of the post-caldera magma chamber: (i) The magma chamber is large and heat losses due to conduction are largely compensated by latent heat supplied by thick, partially crystalline cumulate sequences. (ii) Periodic influx of hot mafic magma, which does not mix with the dacitic magma, inhibits cooling. The second alternative is favored because the post-caldera lavas differ geochemically from the pre-caldera lavas which signifies that a new batch of magma was formed and/or emplaced after the catastrophic eruption of 1390 B.C., and hence that mafic magmas may still be reaching upper crustal levels.

Url:
DOI: 10.1007/BF00376340


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period</title>
<author>
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
</author>
<author>
<name sortKey="Huijsmans, Joep P P" sort="Huijsmans, Joep P P" uniqKey="Huijsmans J" first="Joep P. P." last="Huijsmans">Joep P. P. Huijsmans</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5A8F1CCEAD991A51F5343C9C0CD7636A1191ED9E</idno>
<date when="1986" year="1986">1986</date>
<idno type="doi">10.1007/BF00376340</idno>
<idno type="url">https://api.istex.fr/document/5A8F1CCEAD991A51F5343C9C0CD7636A1191ED9E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000300</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000300</idno>
<idno type="wicri:Area/Istex/Curation">000300</idno>
<idno type="wicri:Area/Istex/Checkpoint">000393</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000393</idno>
<idno type="wicri:doubleKey">0010-7999:1986:Barton M:post:caldera:dacites</idno>
<idno type="wicri:Area/Main/Merge">000488</idno>
<idno type="wicri:Area/Main/Curation">000468</idno>
<idno type="wicri:Area/Main/Exploration">000468</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period</title>
<author>
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geology and Mineralogy, The Ohio State University Columbus, 43210, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huijsmans, Joep P P" sort="Huijsmans, Joep P P" uniqKey="Huijsmans J" first="Joep P. P." last="Huijsmans">Joep P. P. Huijsmans</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Petrology, Institute of Earth Sciences, State University of Utrecht, Budapestlaan 4, 3584, CD Utrecht</wicri:regionArea>
<wicri:noRegion>CD Utrecht</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Contributions to Mineralogy and Petrology</title>
<title level="j" type="abbrev">Contr. Mineral. and Petrol.</title>
<idno type="ISSN">0010-7999</idno>
<idno type="eISSN">1432-0967</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1986-12-01">1986-12-01</date>
<biblScope unit="volume">94</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="472">472</biblScope>
<biblScope unit="page" to="495">495</biblScope>
</imprint>
<idno type="ISSN">0010-7999</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0010-7999</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abbreviation</term>
<term>Acta</term>
<term>Aegean world</term>
<term>Analytical error</term>
<term>Analytical uncertainty</term>
<term>Andesite</term>
<term>Anhedral crystals</term>
<term>Augite</term>
<term>Average composition</term>
<term>Average compositions</term>
<term>Average value</term>
<term>Basalt</term>
<term>Basement rocks</term>
<term>Bulk distribution coefficient</term>
<term>Carmichael</term>
<term>Cation</term>
<term>Clinopyroxene</term>
<term>Cognate</term>
<term>Cognate xenoliths</term>
<term>Compositional</term>
<term>Compositional variation</term>
<term>Compositional variations</term>
<term>Compositionally</term>
<term>Contrib</term>
<term>Contrib mineral petrol</term>
<term>Cosmochim</term>
<term>Crustal</term>
<term>Crystallization</term>
<term>Dacite</term>
<term>Dacitic</term>
<term>Dacitic magma</term>
<term>Differentiation processes</term>
<term>Distribution coefficients</term>
<term>Doumas</term>
<term>Earth planet</term>
<term>Entire period</term>
<term>Equilibrium crystallization</term>
<term>Eruption</term>
<term>Eruption center</term>
<term>Eruptive</term>
<term>Eruptive cycle</term>
<term>Feot</term>
<term>Flow differentiation</term>
<term>Fractional</term>
<term>Fractional crystallization</term>
<term>Free university</term>
<term>Geol</term>
<term>Geotherm</term>
<term>Glomeroporphyritic aggregates</term>
<term>Groundmass</term>
<term>Heiken</term>
<term>Hildreth</term>
<term>Huijsmans</term>
<term>Incompatible elements</term>
<term>Interstitial glasses</term>
<term>Invariant point</term>
<term>Kameni</term>
<term>Kussmaul</term>
<term>Lava</term>
<term>Lava flows</term>
<term>Liquid compositions</term>
<term>Magma</term>
<term>Magma body</term>
<term>Magma chamber</term>
<term>Magma chambers</term>
<term>Magnetite</term>
<term>Major elements</term>
<term>Major oxides</term>
<term>Marie magma</term>
<term>Mass fraction</term>
<term>Mcbirney</term>
<term>Microphenocrysts</term>
<term>Newtonian fluids</term>
<term>Nicholls</term>
<term>Normal zoning</term>
<term>Olivine</term>
<term>Orthopyroxene</term>
<term>Oxide</term>
<term>Oxygen fugacity</term>
<term>Palaea kameni</term>
<term>Parental magma</term>
<term>Past years</term>
<term>Petrographic</term>
<term>Petrol</term>
<term>Petrology</term>
<term>Phenocryst</term>
<term>Phenocryst phases</term>
<term>Phenocrysts</term>
<term>Pichler</term>
<term>Plagioclase</term>
<term>Plagioclase phenocrysts</term>
<term>Puchelt</term>
<term>Pyroxene</term>
<term>Pyroxene thermometry</term>
<term>Reck</term>
<term>Representative analyses</term>
<term>Rhyolitic</term>
<term>Santorini</term>
<term>Santorini volcano</term>
<term>Silicate</term>
<term>Siliceous</term>
<term>Sio2</term>
<term>Sio2 tio2</term>
<term>Small range</term>
<term>Systematic variations</term>
<term>Thera</term>
<term>Time period</term>
<term>Tio2</term>
<term>Titaniferous</term>
<term>Titaniferous magnetite</term>
<term>Total cations</term>
<term>Trace elements</term>
<term>Upper crustal levels</term>
<term>Variation diagrams</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcanic rocks</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Volcanol geotherm</term>
<term>Water content</term>
<term>Water contents</term>
<term>Weill</term>
<term>Xenocrysts</term>
<term>Xenolith</term>
<term>Year period</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abbreviation</term>
<term>Acta</term>
<term>Aegean world</term>
<term>Analytical error</term>
<term>Analytical uncertainty</term>
<term>Andesite</term>
<term>Anhedral crystals</term>
<term>Augite</term>
<term>Average composition</term>
<term>Average compositions</term>
<term>Average value</term>
<term>Basalt</term>
<term>Basement rocks</term>
<term>Bulk distribution coefficient</term>
<term>Carmichael</term>
<term>Cation</term>
<term>Clinopyroxene</term>
<term>Cognate</term>
<term>Cognate xenoliths</term>
<term>Compositional</term>
<term>Compositional variation</term>
<term>Compositional variations</term>
<term>Compositionally</term>
<term>Contrib</term>
<term>Contrib mineral petrol</term>
<term>Cosmochim</term>
<term>Crustal</term>
<term>Crystallization</term>
<term>Dacite</term>
<term>Dacitic</term>
<term>Dacitic magma</term>
<term>Differentiation processes</term>
<term>Distribution coefficients</term>
<term>Doumas</term>
<term>Earth planet</term>
<term>Entire period</term>
<term>Equilibrium crystallization</term>
<term>Eruption</term>
<term>Eruption center</term>
<term>Eruptive</term>
<term>Eruptive cycle</term>
<term>Feot</term>
<term>Flow differentiation</term>
<term>Fractional</term>
<term>Fractional crystallization</term>
<term>Free university</term>
<term>Geol</term>
<term>Geotherm</term>
<term>Glomeroporphyritic aggregates</term>
<term>Groundmass</term>
<term>Heiken</term>
<term>Hildreth</term>
<term>Huijsmans</term>
<term>Incompatible elements</term>
<term>Interstitial glasses</term>
<term>Invariant point</term>
<term>Kameni</term>
<term>Kussmaul</term>
<term>Lava</term>
<term>Lava flows</term>
<term>Liquid compositions</term>
<term>Magma</term>
<term>Magma body</term>
<term>Magma chamber</term>
<term>Magma chambers</term>
<term>Magnetite</term>
<term>Major elements</term>
<term>Major oxides</term>
<term>Marie magma</term>
<term>Mass fraction</term>
<term>Mcbirney</term>
<term>Microphenocrysts</term>
<term>Newtonian fluids</term>
<term>Nicholls</term>
<term>Normal zoning</term>
<term>Olivine</term>
<term>Orthopyroxene</term>
<term>Oxide</term>
<term>Oxygen fugacity</term>
<term>Palaea kameni</term>
<term>Parental magma</term>
<term>Past years</term>
<term>Petrographic</term>
<term>Petrol</term>
<term>Petrology</term>
<term>Phenocryst</term>
<term>Phenocryst phases</term>
<term>Phenocrysts</term>
<term>Pichler</term>
<term>Plagioclase</term>
<term>Plagioclase phenocrysts</term>
<term>Puchelt</term>
<term>Pyroxene</term>
<term>Pyroxene thermometry</term>
<term>Reck</term>
<term>Representative analyses</term>
<term>Rhyolitic</term>
<term>Santorini</term>
<term>Santorini volcano</term>
<term>Silicate</term>
<term>Siliceous</term>
<term>Sio2</term>
<term>Sio2 tio2</term>
<term>Small range</term>
<term>Systematic variations</term>
<term>Thera</term>
<term>Time period</term>
<term>Tio2</term>
<term>Titaniferous</term>
<term>Titaniferous magnetite</term>
<term>Total cations</term>
<term>Trace elements</term>
<term>Upper crustal levels</term>
<term>Variation diagrams</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcanic rocks</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Volcanol geotherm</term>
<term>Water content</term>
<term>Water contents</term>
<term>Weill</term>
<term>Xenocrysts</term>
<term>Xenolith</term>
<term>Year period</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Oxyde</term>
<term>Essence</term>
<term>Pétrologie</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The post-caldera Kameni islands of the Santorini volcanic complex, Aegean Sea, Greece are entirely volcanic and were formed by eleven eruptions between 197 B.C. and 1950. Petrographic, mineral chemical and whole-rock major and trace element data are presented for samples of lava collected from the products of seven eruptive cycles which span the entire period of activity. The main phenocryst phases are plagioclase, clinopyroxene, orthopyroxene and titaniferous magnetite, which are weakly zoned (e.g. plagioclase — An55 to An42). The lavas are typical calc-alkaline dacites and show a restricted range of composition (from 64.1 to 68.4 wt. % SiO2). The phenocrysts were in equilibrium with the melts at temperatures of 960–1012 °C, pressures of 800–1500 bars and oxygen fugacities of 10−9.6-10−9.9 bars. The pre-eruptive water content of the magmas was 3–4 wt. % but since the lavas contain only 0.1–0.4 wt. % H2O, a considerable amount (about 0.01–0.015 km3) of water was lost prior to or during eruption. This indicates that the magmas rose to the surface gradually allowing the (largely) non-explosive loss of volatiles. The lavas were probably extruded initially from more or less cylindrical conduits which developed into fissures as the eruptions proceeded. The post-caldera lavas evolved from more mafic parental magmas (basalt-andesite) via fractional crystallization. The small range of compositional variation shown by these lavas can be explained in terms of near-equilibrium crystallization. Analyses of samples of lavas belonging to single eruption cycles and to individual flows indicate that the underlying magma chamber is compositionally zoned. The average composition of erupted magma has remained approximately constant since 1570 A.D. but that fact that the 197 B.C. magma was sligthly richer in SiO2 provides additional evidence that the magma chamber is compositionally zoned. Crystal settling has not affected the composition of the magma over a 2,200 year period of time which indicates that the melts do not behave as Newtonian fluids. Zonation was thus probably established prior to the 197 B.C. eruption though it is possible that it is developed and maintained by crystal-liquid differentiation processes other than crystal settling (e.g. boundary layer crystallization). The data indicate that there has been no significant cooling during 2,200 years; the maximum amount of cooling is <50 °C and is probably less than ∼30 °C. Two hypotheses are considered to explain the thermal and chemical buffering of the post-caldera magma chamber: (i) The magma chamber is large and heat losses due to conduction are largely compensated by latent heat supplied by thick, partially crystalline cumulate sequences. (ii) Periodic influx of hot mafic magma, which does not mix with the dacitic magma, inhibits cooling. The second alternative is favored because the post-caldera lavas differ geochemically from the pre-caldera lavas which signifies that a new batch of magma was formed and/or emplaced after the catastrophic eruption of 1390 B.C., and hence that mafic magmas may still be reaching upper crustal levels.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Barton, Michael" sort="Barton, Michael" uniqKey="Barton M" first="Michael" last="Barton">Michael Barton</name>
</region>
</country>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Huijsmans, Joep P P" sort="Huijsmans, Joep P P" uniqKey="Huijsmans J" first="Joep P. P." last="Huijsmans">Joep P. P. Huijsmans</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000468 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000468 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:5A8F1CCEAD991A51F5343C9C0CD7636A1191ED9E
   |texte=   Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021